Search results
Results from the WOW.Com Content Network
In nylon, hydrogen bonds between carbonyl and the amide NH effectively link adjacent chains, which gives the material mechanical strength. Hydrogen bonds also affect the aramid fibre, where hydrogen bonds stabilize the linear chains laterally. The chain axes are aligned along the fibre axis, making the fibres extremely stiff and strong.
From this table we see that the number of hydrogen and chlorine atoms on the product's side are twice the number of atoms on the reactant's side. Therefore, we add the coefficient "2" in front of the HCl on the products side, to get the equation to look like this: Mg + 2 HCl → MgCl 2 + H 2. and the table reflects that change:
By some definitions, "organic" compounds are only required to contain carbon. However, most of them also contain hydrogen, and because it is the carbon-hydrogen bond that gives this class of compounds most of its particular chemical characteristics, carbon-hydrogen bonds are required in some definitions of the word "organic" in chemistry. [12]
Hydrogen bonds of the form A--H•••B occur when A and B are two highly electronegative atoms (usually N, O or F) such that A forms a highly polar covalent bond with H so that H has a partial positive charge, and B has a lone pair of electrons which is attracted to this partial positive charge and forms a hydrogen bond. [23]: 702 Hydrogen ...
Most importantly, the N-H group of an amino acid forms a hydrogen bond with the C=O group of the amino acid five residues earlier; this repeated i + 5 → i hydrogen bonding defines a π-helix. Similar structures include the 3 10 helix (i + 3 → i hydrogen bonding) and the α-helix (i + 4 → i hydrogen bonding). Top view of the same helix ...
By some definitions, "organic" compounds are only required to contain carbon. However, most of them also contain hydrogen, and because it is the carbon-hydrogen bond that gives this class of compounds most of its particular chemical characteristics, carbon-hydrogen bonds are required in some definitions of the word "organic" in chemistry. [43]
Binary hydrogen compounds in group 1 are the ionic hydrides (also called saline hydrides) wherein hydrogen is bound electrostatically. Because hydrogen is located somewhat centrally in an electronegative sense, it is necessary for the counterion to be exceptionally electropositive for the hydride to possibly be accurately described as truly behaving ionic.
The theory is also applied to so-called hydrogen–hydrogen bond s [5] as they occur in molecules such as phenanthrene and chrysene. In these compounds, the distance between two ortho hydrogen atoms again is shorter than their van der Waals radii, and according to in silico experiments based on this theory, a bond path is identified between them.