Ad
related to: scikit-learn python- Codecademy Pro Student
Start a 7-Day Free Trial Today
Student Pricing Now Availble
- Codecademy Pro
Try Free for 7 Days.
Learn More with Exclusive Courses.
- Codecademy Pro Student
Search results
Results from the WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
The scikit-learn project started as scikits.learn, a Google Summer of Code project by David Cournapeau. After having worked for Silveregg, a SaaS Japanese company delivering recommendation systems for Japanese online retailers, [3] he worked for 6 years at Enthought, a scientific consulting company.
Python is a high-level, general-purpose programming language. Its design philosophy emphasizes code readability with the use of significant indentation. [33] Python is dynamically type-checked and garbage-collected. It supports multiple programming paradigms, including structured (particularly procedural), object-oriented and functional ...
The scikit-learn Python package implements some multi-labels algorithms and metrics. The scikit-multilearn Python package specifically caters to the multi-label classification. It provides multi-label implementation of several well-known techniques including SVM, kNN and many more. The package is built on top of scikit-learn ecosystem.
The library NumPy can be used for manipulating arrays, SciPy for scientific and mathematical analysis, Pandas for analyzing table data, Scikit-learn for various machine learning tasks, NLTK and spaCy for natural language processing, OpenCV for computer vision, and Matplotlib for data visualization. [3]
Provide a [Python] script to handle missing values in my dataset using [pandas]. Give me a basic example of building a [logistic regression model] using [scikit-learn].
A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Ad
related to: scikit-learn python