Search results
Results from the WOW.Com Content Network
The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...
The original proof that the Hausdorff–Young inequality cannot be extended to > is probabilistic. The proof of the de Leeuw–Kahane–Katznelson theorem (which is a stronger claim) is partially probabilistic. [1] The first construction of a Salem set was probabilistic. [2] Only in 1981 did Kaufman give a deterministic construction.
It should only contain pages that are Probability theorems or lists of Probability theorems, as well as subcategories containing those things (themselves set categories). Topics about Probability theorems in general should be placed in relevant topic categories .
Khinchin's theorem (probability) Killing–Hopf theorem (Riemannian geometry) Kinoshita–Lee–Nauenberg theorem (quantum field theory) Kirby–Paris theorem (proof theory) Kirchberger's theorem (discrete geometry) Kirchhoff's theorem (graph theory) Kirszbraun theorem (Lipschitz continuity) Kleene fixed-point theorem (order theory)
The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same probability space, then
The LCF approach provides similar trustworthiness to systems that generate explicit proof certificates but without the need to store proof objects in memory. The Theorem data type can be easily implemented to optionally store proof objects, depending on the system's run-time configuration, so it generalizes the basic proof-generation approach.
The certainty that is adopted can be described in terms of a numerical measure, and this number, between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty) is called the probability. Probability theory is used extensively in statistics , mathematics , science and philosophy to draw conclusions about the likelihood of potential ...
Probability generating functions are often employed for their succinct description of the sequence of probabilities Pr(X = i) in the probability mass function for a random variable X, and to make available the well-developed theory of power series with non-negative coefficients.