Search results
Results from the WOW.Com Content Network
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...
The tool comes pre-programmed with 36 different example graphs for the purpose of teaching new users about the tool and the mathematics involved. [ 15 ] As of April 2017, Desmos also released a browser-based 2D interactive geometry tool, with supporting features including the plotting of points, lines, circles, and polygons.
tensor graph product (or direct graph product, categorical graph product, cardinal graph product, Kronecker graph product): it is a commutative and associative operation (for unlabelled graphs), zig-zag graph product; [3] graph product based on other products: rooted graph product: it is an associative operation (for unlabelled but rooted ...
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
In graph theory, the Cartesian product of two graphs G and H is the graph denoted by G × H, whose vertex set is the (ordinary) Cartesian product V(G) × V(H) and such that two vertices (u,v) and (u′,v′) are adjacent in G × H, if and only if u = u′ and v is adjacent with v ′ in H, or v = v′ and u is adjacent with u ′ in G.
A graph is commonly used to give an intuitive picture of a function. As an example of how a graph helps to understand a function, it is easy to see from its graph whether a function is increasing or decreasing. Some functions may also be represented by bar charts.
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).