Search results
Results from the WOW.Com Content Network
On the other hand, if the motor is driven as a generator, the no-load voltage between terminals is perfectly proportional to the RPM and true to the of the motor/generator. The terms K e {\displaystyle K_{\text{e}}} , [ 2 ] K b {\displaystyle K_{\text{b}}} are also used, [ 4 ] as are the terms back EMF constant , [ 5 ] [ 6 ] or the generic ...
The tip-speed ratio, λ, or TSR for wind turbines is the ratio between the tangential speed of the tip of a blade and the actual speed of the wind, v. The tip-speed ratio is related to efficiency, with the optimum varying with blade design. [1] Higher tip speeds result in higher noise levels and require stronger blades due to larger centrifugal ...
Audio CD players read their discs at a precise, constant rate (4.3218 Mbit/s of raw physical data for 1.4112 Mbit/s (176.4 KB/s) of usable audio data) and thus must vary the disc's rotational speed from 8 Hz (480 rpm) when reading at the innermost edge to 3.5 Hz (210 rpm) at the outer edge. [2]
The radian per second (symbol: rad⋅s −1 or rad/s) is the unit of angular velocity in the International System of Units (SI). The radian per second is also the SI unit of angular frequency (symbol ω, omega). The radian per second is defined as the angular frequency that results in the angular displacement increasing by one radian every ...
Rotational frequency, also known as rotational speed or rate of rotation (symbols ν, lowercase Greek nu, and also n), is the frequency of rotation of an object around an axis. Its SI unit is the reciprocal seconds (s −1 ); other common units of measurement include the hertz (Hz), cycles per second (cps), and revolutions per minute (rpm).
When is normalized with reference to the sampling rate as ′ =, the normalized Nyquist angular frequency is π radians/sample. The following table shows examples of normalized frequency for f = 1 {\displaystyle f=1} kHz , f s = 44100 {\displaystyle f_{s}=44100} samples/second (often denoted by 44.1 kHz ), and 4 normalization conventions:
Specific speed N s, is used to characterize turbomachinery speed. [1] Common commercial and industrial practices use dimensioned versions which are of equal utility. Specific speed is most commonly used in pump applications to define the suction specific speed —a quasi non-dimensional number that categorizes pump impellers as to their type and proportions.
Both calculate an approximation of the first natural frequency of vibration, which is assumed to be nearly equal to the critical speed of rotation. The Rayleigh–Ritz method is discussed here. For a shaft that is divided into n segments, the first natural frequency for a given beam, in rad/s, can be approximated as: