Search results
Results from the WOW.Com Content Network
Formally, a rational map: between two varieties is an equivalence class of pairs (,) in which is a morphism of varieties from a non-empty open set to , and two such pairs (,) and (′ ′, ′) are considered equivalent if and ′ ′ coincide on the intersection ′ (this is, in particular, vacuously true if the intersection is empty, but since is assumed irreducible, this is impossible).
There has been extensive research on the Fatou set and Julia set of iterated rational functions, known as rational maps. For example, it is known that the Fatou set of a rational map has either 0, 1, 2 or infinitely many components. [3] Each component of the Fatou set of a rational map can be classified into one of four different classes. [4]
If X is a smooth complete curve (for example, P 1) and if f is a rational map from X to a projective space P m, then f is a regular map X → P m. [5] In particular, when X is a smooth complete curve, any rational function on X may be viewed as a morphism X → P 1 and, conversely, such a morphism as a rational function on X.
A birational map from X to Y is a rational map f : X ⇢ Y such that there is a rational map Y ⇢ X inverse to f.A birational map induces an isomorphism from a nonempty open subset of X to a nonempty open subset of Y, and vice versa: an isomorphism between nonempty open subsets of X, Y by definition gives a birational map f : X ⇢ Y.
For example, the conic x 2 + y 2 + z 2 = 0 in P 2 over the real numbers R is uniruled but not ruled. (The associated curve over the complex numbers C is isomorphic to P 1 and hence is ruled.) In the positive direction, every uniruled variety of dimension at most 2 over an algebraically closed field of characteristic zero is ruled.
Quotient surfaces, surfaces that are constructed as the orbit space of some other surface by the action of a finite group; examples include Kummer, Godeaux, Hopf, and Inoue surfaces; Zariski surfaces, surfaces in finite characteristic that admit a purely inseparable dominant rational map from the projective plane
For example, Spec k[x] and Spec k(x) and have the same function field (namely, k(x)) but there is no rational map from the former to the latter. However, it is true that any inclusion of function fields of algebraic varieties induces a dominant rational map (see morphism of algebraic varieties#Properties.)
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.