Search results
Results from the WOW.Com Content Network
In a shock wave the properties of the fluid (density, pressure, temperature, flow velocity, Mach number) change almost instantaneously. [7] Measurements of the thickness of shock waves in air have resulted in values around 200 nm (about 10 −5 in), [8] which is on the same order of magnitude as the mean free path of gas molecules. In reference ...
In mechanics and physics, shock is a sudden acceleration caused, for example, by impact, drop, kick, earthquake, or explosion. Shock is a transient physical excitation. Shock describes matter subject to extreme rates of force with respect to time. Shock is a vector that has units of an acceleration (rate of change of velocity).
An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the direction of incoming air. It occurs when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. [1] The upstream streamlines are uniformly deflected after the shock
Observers hear nothing until the shock wave, on the edges of the cone, crosses their location. Mach cone angle NASA data showing N-wave signature. [1] Conical shockwave with its hyperbola-shaped ground contact zone in yellow. A sonic boom is a sound associated with shock waves created when an object travels through the air faster than the speed ...
A schematic diagram of a shock wave situation with the density , velocity , and temperature indicated for each region.. The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave (deflagration or detonation) in a one-dimensional flow in ...
Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. [1] The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2.
Blast waves cause damage by a combination of the significant compression of the air in front of the wave (forming a shock front) and the subsequent wind that follows. [15] A blast wave travels faster than the speed of sound, and the passage of the shock wave usually lasts only a few milliseconds. Like other types of explosions, a blast wave can ...
In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios.