enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shock wave - Wikipedia

    en.wikipedia.org/wiki/Shock_wave

    In a shock wave the properties of the fluid (density, pressure, temperature, flow velocity, Mach number) change almost instantaneously. [7] Measurements of the thickness of shock waves in air have resulted in values around 200 nm (about 10 −5 in), [8] which is on the same order of magnitude as the mean free path of gas molecules. In reference ...

  3. Shock (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Shock_(mechanics)

    In mechanics and physics, shock is a sudden acceleration caused, for example, by impact, drop, kick, earthquake, or explosion. Shock is a transient physical excitation. Shock describes matter subject to extreme rates of force with respect to time. Shock is a vector that has units of an acceleration (rate of change of velocity).

  4. Oblique shock - Wikipedia

    en.wikipedia.org/wiki/Oblique_shock

    An oblique shock wave is a shock wave that, unlike a normal shock, is inclined with respect to the direction of incoming air. It occurs when a supersonic flow encounters a corner that effectively turns the flow into itself and compresses. [1] The upstream streamlines are uniformly deflected after the shock

  5. Sonic boom - Wikipedia

    en.wikipedia.org/wiki/Sonic_boom

    Observers hear nothing until the shock wave, on the edges of the cone, crosses their location. Mach cone angle NASA data showing N-wave signature. [1] Conical shockwave with its hyperbola-shaped ground contact zone in yellow. A sonic boom is a sound associated with shock waves created when an object travels through the air faster than the speed ...

  6. Rankine–Hugoniot conditions - Wikipedia

    en.wikipedia.org/wiki/Rankine–Hugoniot_conditions

    A schematic diagram of a shock wave situation with the density , velocity , and temperature indicated for each region.. The Rankine–Hugoniot conditions, also referred to as Rankine–Hugoniot jump conditions or Rankine–Hugoniot relations, describe the relationship between the states on both sides of a shock wave or a combustion wave (deflagration or detonation) in a one-dimensional flow in ...

  7. Transonic - Wikipedia

    en.wikipedia.org/wiki/Transonic

    Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. [1] The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2.

  8. Blast wave - Wikipedia

    en.wikipedia.org/wiki/Blast_wave

    Blast waves cause damage by a combination of the significant compression of the air in front of the wave (forming a shock front) and the subsequent wind that follows. [15] A blast wave travels faster than the speed of sound, and the passage of the shock wave usually lasts only a few milliseconds. Like other types of explosions, a blast wave can ...

  9. Normal shock tables - Wikipedia

    en.wikipedia.org/wiki/Normal_shock_tables

    In aerodynamics, the normal shock tables are a series of tabulated data listing the various properties before and after the occurrence of a normal shock wave. [1] With a given upstream Mach number, the post-shock Mach number can be calculated along with the pressure, density, temperature, and stagnation pressure ratios.