Search results
Results from the WOW.Com Content Network
where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz). The cutoff frequency when expressed as an angular frequency ( ω c = 2 π f c ) {\displaystyle (\omega _{c}{=}2\pi f_{c})} is simply the reciprocal of the time constant.
The complex impedance, Z C (in ohms) of a capacitor with capacitance C (in farads) is = The complex frequency s is, in general, a complex number, = +, where j represents the imaginary unit: j 2 = −1, σ is the exponential decay constant (in nepers per second), and
In general, capacitance is a function of frequency. At high frequencies, capacitance approaches a constant value, equal to "geometric" capacitance, determined by the terminals' geometry and dielectric content in the device. A paper by Steven Laux [27] presents a review of numerical techniques for capacitance calculation.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
The capacitance of a capacitor is one farad when one coulomb of charge changes the potential between the plates by one volt. [1] [2] Equally, one farad can be described as the capacitance which stores a one-coulomb charge across a potential difference of one volt. [3] The relationship between capacitance, charge, and potential difference is linear.
A current buffer stage may be added at the output to lower the gain between the input and output terminals of the amplifier (though not necessarily the overall gain). For example, a common base may be used as a current buffer at the output of a common emitter stage, forming a cascode. This will typically reduce the Miller effect and increase ...
The solutions to the long line transmission equations include incident and reflected portions of the voltage and current: = + + = / + / When the line is terminated with its characteristic impedance, the reflected portions of these equations are reduced to 0 and the solutions to the voltage and current along the transmission line are wholly ...
Conduction current is related to moving charge carriers (electrons, holes, ions, etc.), while displacement current is caused by time-varying electric field. Carrier transport is affected by electric field and by a number of physical phenomena, such as carrier drift and diffusion, trapping, injection, contact-related effects, and impact ionization.