Search results
Results from the WOW.Com Content Network
where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz). The cutoff frequency when expressed as an angular frequency ( ω c = 2 π f c ) {\displaystyle (\omega _{c}{=}2\pi f_{c})} is simply the reciprocal of the time constant.
In general, capacitance is a function of frequency. At high frequencies, capacitance approaches a constant value, equal to "geometric" capacitance, determined by the terminals' geometry and dielectric content in the device. A paper by Steven Laux [27] presents a review of numerical techniques for capacitance calculation.
The complex impedance, Z C (in ohms) of a capacitor with capacitance C (in farads) is = The complex frequency s is, in general, a complex number, = +, where j represents the imaginary unit: j 2 = −1, σ is the exponential decay constant (in nepers per second), and
Using the Smith chart, the normalised impedance may be obtained with appreciable accuracy by plotting the point representing the reflection coefficient treating the Smith chart as a polar diagram and then reading its value directly using the characteristic Smith chart scaling. This technique is a graphical alternative to substituting the values ...
Capacitors and inductors as used in electric circuits are not ideal components with only capacitance or inductance.However, they can be treated, to a very good degree of approximation, as being ideal capacitors and inductors in series with a resistance; this resistance is defined as the equivalent series resistance (ESR) [1].
It is common for electrical components to have slightly reduced capacitances at extreme frequencies, due to slight inductance of the internal conductors used to make capacitors (not just the leads), and permittivity changes in insulating materials with frequency: C is very nearly, but not quite a constant.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Wien's bridge is used for precision measurement of capacitance in terms of resistance and frequency. [3] It was also used to measure audio frequencies. The Wien bridge does not require equal values of R or C. At some frequency, the reactance of the series R 2 –C 2 arm will be an exact multiple of the shunt R x –C x arm.