Search results
Results from the WOW.Com Content Network
Set up a statistical null hypothesis. The null need not be a nil hypothesis (i.e., zero difference). Set up two statistical hypotheses, H1 and H2, and decide about α, β, and sample size before the experiment, based on subjective cost-benefit considerations. These define a rejection region for each hypothesis. 2
Testing a hypothesis suggested by the data can very easily result in false positives (type I errors). If one looks long enough and in enough different places, eventually data can be found to support any hypothesis. Yet, these positive data do not by themselves constitute evidence that the hypothesis is correct. The negative test data that were ...
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.
Permutation tests exist for any test statistic, regardless of whether or not its distribution is known. Thus one is always free to choose the statistic which best discriminates between hypothesis and alternative and which minimizes losses.
This is why the hypothesis under test is often called the null hypothesis (most likely, coined by Fisher (1935, p. 19)), because it is this hypothesis that is to be either nullified or not nullified by the test. When the null hypothesis is nullified, it is possible to conclude that data support the "alternative hypothesis" (which is the ...
In hypothesis testing, the primary objective of statistical calculations is to obtain a p-value, the probability of seeing an obtained result, or a more extreme result, when assuming the null hypothesis is true. If the p-value is low (usually < 0.05), the statistical practitioner is then encouraged to reject the null hypothesis.
Equivalence tests are a variety of hypothesis tests used to draw statistical inferences from observed data. In these tests, the null hypothesis is defined as an effect large enough to be deemed interesting, specified by an equivalence bound. The alternative hypothesis is any effect that is less extreme than said equivalence bound.
In statistical hypothesis testing, a uniformly most powerful (UMP) test is a hypothesis test which has the greatest power among all possible tests of a given size α. For example, according to the Neyman–Pearson lemma , the likelihood-ratio test is UMP for testing simple (point) hypotheses.