Search results
Results from the WOW.Com Content Network
Capacitance is the ability of an object to store electric charge. It is measured by the charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related notions of capacitance: self capacitance and mutual capacitance.
The capacitance of certain capacitors decreases as the component ages. In ceramic capacitors, this is caused by degradation of the dielectric. The type of dielectric, ambient operating and storage temperatures are the most significant aging factors, while the operating voltage usually has a smaller effect, i.e., usual capacitor design is to ...
Mutual capacitance allows multi-touch operation where multiple fingers, palms or styli can be accurately tracked at the same time. [10] Self-capacitance sensors can have the same X-Y grid as mutual capacitance sensors, but the columns and rows operate independently. With self-capacitance, current senses the capacitive load of a finger on each ...
The rated capacitance C R or nominal capacitance C N is the value for which the capacitor has been designed. Actual capacitance depends on the measured frequency and ambient temperature. Standard measuring conditions are a low-voltage AC measuring method at a temperature of 20 °C with frequencies of
The effects of varying the characteristics of the dielectric can also be used for sensing and measurement. Capacitors with an exposed and porous dielectric can be used to measure humidity in air. Capacitors are used to accurately measure the fuel level in airplanes; as the fuel covers more of a pair of plates, the circuit capacitance increases.
The relationship between capacitance, charge, and potential difference is linear. For example, if the potential difference across a capacitor is halved, the quantity of charge stored by that capacitor will also be halved. For most applications, the farad is an impractically large unit of capacitance.
The relative static permittivity, ε r, can be measured for static electric fields as follows: first the capacitance of a test capacitor, C 0, is measured with vacuum between its plates. Then, using the same capacitor and distance between its plates, the capacitance C with a dielectric between the plates is measured. The relative permittivity ...
Double-layer capacitance is the important characteristic of the electrical double layer [1] [2] which appears at the interface between a surface and a fluid (for example, between a conductive electrode and an adjacent liquid electrolyte).