enow.com Web Search

  1. Ad

    related to: generalization of a triangle practice pdf problems 6th level of measurement

Search results

  1. Results from the WOW.Com Content Network
  2. Lester's theorem - Wikipedia

    en.wikipedia.org/wiki/Lester's_theorem

    In 2000, Bernard Gibert proposed a generalization of the Lester Theorem involving the Kiepert hyperbola of a triangle. His result can be stated as follows: Every circle with a diameter that is a chord of the Kiepert hyperbola and perpendicular to the triangle's Euler line passes through the Fermat points.

  3. Proportional reasoning - Wikipedia

    en.wikipedia.org/wiki/Proportional_reasoning

    Suppose the triangle is tilted even more until the water level on the right side is at 8 units. Predict what the water level in units will be on the left side. Typical Solutions. Someone with knowledge about the area of triangles might reason: "Initially the area of the water forming the triangle is 12 since ⁠ 1 / 2 ⁠ × 4 × 6 = 12. The ...

  4. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    The new shape, triangle ABC, requires two dimensions; it cannot fit in the original 1-dimensional space. The triangle is the 2-simplex, a simple shape that requires two dimensions. Consider a triangle ABC, a shape in a 2-dimensional space (the plane in which the triangle

  5. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    Generalization for arbitrary triangles, green area = blue area Construction for proof of parallelogram generalization. Pappus's area theorem is a further generalization, that applies to triangles that are not right triangles, using parallelograms on the three sides in place of squares (squares are a special case, of course). The upper figure ...

  6. Droz-Farny line theorem - Wikipedia

    en.wikipedia.org/wiki/Droz-Farny_line_theorem

    First generalization: Let ABC be a triangle, P be a point on the plane, let three parallel segments AA', BB', CC' such that its midpoints and P are collinear. Then PA', PB', PC' meet BC, CA, AB respectively at three collinear points. [6] Dao's second generalization. Second generalization: Let a conic S and a point P on the plane.

  7. Pappus's area theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_area_theorem

    Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem, is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.

  8. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...

  9. Christofides algorithm - Wikipedia

    en.wikipedia.org/wiki/Christofides_algorithm

    Methods based on the Christofides–Serdyukov algorithm can also be used to approximate the stacker crane problem, a generalization of the TSP in which the input consists of ordered pairs of points from a metric space that must be traversed consecutively and in order. For this problem, it achieves an approximation ratio of 9/5. [10]

  1. Ad

    related to: generalization of a triangle practice pdf problems 6th level of measurement