enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Simpson's 1/3 rule. Simpson's 1/3 rule, also simply called Simpson's rule, is a method for numerical integration proposed by Thomas Simpson. It is based upon a quadratic interpolation and is the composite Simpson's 1/3 rule evaluated for . Simpson's 1/3 rule is as follows: where is the step size for .

  3. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. It follows that.

  4. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    Upper and lower methods make the approximation using the largest and smallest endpoint values of each subinterval, respectively. The values of the sums converge as the subintervals halve from top-left to bottom-right. In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum.

  5. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    Heun's method. In mathematics and computational science, Heun's method may refer to the improved[1] or modified Euler's method (that is, the explicit trapezoidal rule[2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial ...

  6. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    Trapezoidal rule (differential equations) In numerical analysis and scientific computing, the trapezoidal rule is a numerical method to solve ordinary differential equations derived from the trapezoidal rule for computing integrals. The trapezoidal rule is an implicit second-order method, which can be considered as both a Runge–Kutta method ...

  7. Ackermann steering geometry - Wikipedia

    en.wikipedia.org/wiki/Ackermann_steering_geometry

    Ackermann geometry. The Ackermann steering geometry is a geometric arrangement of linkages in the steering of a car or other vehicle designed to solve the problem of wheels on the inside and outside of a turn needing to trace out circles of different radii. It was invented by the German carriage builder Georg Lankensperger in Munich in 1816 ...

  8. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    Romberg's method. In numerical analysis, Romberg's method[1] is used to estimate the definite integral by applying Richardson extrapolation [2] repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array. Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally ...

  9. Truncation error (numerical integration) - Wikipedia

    en.wikipedia.org/wiki/Truncation_error...

    Suppose we have a continuous differential equation ′ = (,), =, and we wish to compute an approximation of the true solution () at discrete time steps ,, …,.For simplicity, assume the time steps are equally spaced: