Search results
Results from the WOW.Com Content Network
Lactic acid fermentation is a metabolic process by which glucose or other six-carbon sugars (also, disaccharides of six-carbon sugars, e.g. sucrose or lactose) are converted into cellular energy and the metabolite lactate, which is lactic acid in solution.
These lactic acid bacteria can carry out either homolactic fermentation, where the end-product is mostly lactic acid, or heterolactic fermentation, where some lactate is further metabolized to ethanol and carbon dioxide [19] (via the phosphoketolase pathway), acetate, or other metabolic products, e.g.: C 6 H 12 O 6 → CH 3 CHOHCOOH + C 2 H 5 ...
One method of doing this is to simply have the pyruvate do the oxidation; in this process, pyruvate is converted to lactate (the conjugate base of lactic acid) in a process called lactic acid fermentation: Pyruvate + NADH + H + → Lactate + NAD + This process occurs in the bacteria involved in making yogurt (the lactic acid causes the milk to ...
Lactic acid produced by fermentation of milk is often racemic, although certain species of bacteria produce solely D-lactic acid. [6] On the other hand, lactic acid produced by fermentation in animal muscles has the (L) enantiomer and is sometimes called "sarcolactic" acid, from the Greek sarx, meaning "flesh".
Pyruvate is the terminal electron acceptor in lactic acid fermentation. When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate by the enzyme lactate dehydrogenase. [3]
One of the chemical processes that Pasteur studied was the fermentation of sugar into lactic acid, as occurs in the souring of milk. In an 1857 experiment, Pasteur was able to isolate microorganisms present in lactic acid ferment after the chemical process had taken place. [9] Pasteur then cultivated the microorganisms in a culture with his ...
The lactic acid bacteria (LAB) are either rod-shaped (), or spherical (), and are characterized by an increased tolerance to acidity (low pH range).This aspect helps LAB to outcompete other bacteria in a natural fermentation, as they can withstand the increased acidity from organic acid production (e.g., lactic acid).
Pathway by which glucose is converted to lactic acid as a means of energy production. L. acidophilus is a homofermentative anaerobic microorganism, meaning it only produces lactic acid as an end product of fermentation; and that it can only ferment hexoses (not pentoses) by way of the EMP pathway (glycolysis). [5]