enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schottky diode - Wikipedia

    en.wikipedia.org/wiki/Schottky_diode

    While standard silicon diodes have a forward voltage drop of about 0.7 V and germanium diodes 0.3 V, Schottky diodes' voltage drop at forward biases of around 1 mA is in the range of 0.15 V to 0.46 V (see the 1N5817 [6] and 1N5711 [7]), which makes them useful in voltage clamping applications and prevention of transistor saturation.

  3. Schottky barrier - Wikipedia

    en.wikipedia.org/wiki/Schottky_barrier

    A Schottky diode is a single metal–semiconductor junction, used for its rectifying properties. Schottky diodes are often the most suitable kind of diode when a low forward voltage drop is desired, such as in a high-efficiency DC power supply. Also, because of their majority-carrier conduction mechanism, Schottky diodes can achieve greater ...

  4. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    Band diagram for Schottky barrier at equilibrium Band diagram for semiconductor heterojunction at equilibrium In solid-state physics of semiconductors , a band diagram is a diagram plotting various key electron energy levels ( Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x . [ 1 ]

  5. Metal–semiconductor junction - Wikipedia

    en.wikipedia.org/wiki/Metal–semiconductor_junction

    The Schottky diode, also known as the Schottky-barrier diode, was theorized for years, but was first practically realized as a result of the work of Atalla and Kahng during 1960–1961. [ 23 ] [ 24 ] They published their results in 1962 and called their device the "hot electron" triode structure with semiconductor-metal emitter. [ 25 ]

  6. Diode - Wikipedia

    en.wikipedia.org/wiki/Diode

    This allows the diode to operate at higher signal frequencies, at the expense of a higher forward voltage drop. Gold-doped diodes are faster than other p–n diodes (but not as fast as Schottky diodes). They also have less reverse-current leakage than Schottky diodes (but not as good as other p–n diodes). [43] [44] A typical example is the 1N914.

  7. Mott–Schottky plot - Wikipedia

    en.wikipedia.org/wiki/Mott–Schottky_plot

    In solid junctions, we can take as a reference the metal Fermi level, if the work function is known, which provides a full energy diagram in the physical scale. The Mott–Schottky plot is sensitive to the electrode surface in contact with solution, see Figure 2.

  8. Shockley diode equation - Wikipedia

    en.wikipedia.org/wiki/Shockley_diode_equation

    Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]

  9. Rectenna - Wikipedia

    en.wikipedia.org/wiki/Rectenna

    The diode rectifies the AC induced in the antenna by the microwaves, to produce DC power, which powers a load connected across the diode. Schottky diodes are usually used because they have the lowest voltage drop and highest speed and therefore have the lowest power losses due to conduction and switching. [ 1 ]