enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangential speed - Wikipedia

    en.wikipedia.org/wiki/Tangential_speed

    When proper units are used for tangential speed v, rotational speed ω, and radial distance r, the direct proportion of v to both r and ω becomes the exact equation =. This comes from the following: the linear (tangential) velocity of an object in rotation is the rate at which it covers the circumference's length:

  3. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    The radial and tangential velocity components can then be computed with the formulas (see the Kepler orbit article) = ⁡ = (+ ⁡). The transfer times from P 1 to P 2 for other values of y are displayed in Figure 4.

  4. Blade element momentum theory - Wikipedia

    en.wikipedia.org/wiki/Blade_Element_Momentum_Theory

    The radial component of the velocity will be zero; this must be true if we are to use the annular ring approach; to assume otherwise would suggest interference between annular rings at some point downstream. Since we assume that there is no change in axial velocity across the disc, , = (). Angular momentum must be conserved in an isolated system.

  5. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Figure 1: Velocity v and acceleration a in uniform circular motion at angular rate ω; the speed is constant, but the velocity is always tangential to the orbit; the acceleration has constant magnitude, but always points toward the center of rotation.

  6. Blade element theory - Wikipedia

    en.wikipedia.org/wiki/Blade_element_theory

    Consider the element at radius r, shown in Fig. 1, which has the infinitesimal length dr and the width b. The motion of the element in an aircraft propeller in flight is along a helical path determined by the forward velocity V of the aircraft and the tangential velocity 2πrn of the element in the plane of the propeller disc, where n represents the revolutions per unit time.

  7. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    These equations govern the power, efficiencies and other factors that contribute to the design of turbomachines. With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1]

  8. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    In a two-body simulation, these elements are sufficient to compute the satellite's position and velocity at any time in the future, using the universal variable formulation. Conversely, at any moment in the satellite's orbit, we can measure its position and velocity, and then use the universal variable approach to determine what its initial ...

  9. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    However the most common application multiplies induced velocity term by F in the momentum equations. As in the momentum equation there are many variations for applying F, some argue that the mass flow should be corrected in either the axial equation, or both axial and tangential equations.