Search results
Results from the WOW.Com Content Network
Among the 41 even-Z elements that have a stable nuclide, only two elements (argon and cerium) have no even–odd stable nuclides. One element (tin) has three. There are 24 elements that have one even–odd nuclide and 13 that have two even–odd nuclides. The lightest example of this type of nuclide is 3 2 He and the heaviest is 207 82 Pb.
An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.
Stable even–even nuclides number as many as three isobars for some mass numbers, and up to seven isotopes for some atomic numbers. Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 ( deuterium ), lithium-6 , boron-10 , nitrogen-14 , and tantalum-180m .
A set of nuclides with equal proton number (atomic number), i.e., of the same chemical element but different neutron numbers, are called isotopes of the element. Particular nuclides are still often loosely called "isotopes", but the term "nuclide" is the correct one in general (i.e., when Z is not fixed).
The 146 even-proton, even-neutron (EE) nuclides comprise ~58% of all stable nuclides and all have spin 0 because of pairing. There are also 24 primordial long-lived even-even nuclides. As a result, each of the 41 even-numbered elements from 2 to 82 has at least one stable isotope, and most of these elements have several primordial isotopes ...
In atomic physics, even–even (EE) nuclei are nuclei with an even number of neutrons and an even number of protons. Even-mass-number nuclei, which comprise 151/251 = ~60% of all stable nuclei, are bosons, i.e. they have integer spin. The vast majority of them, 146 out of 151, belong to the EE class; they have spin 0 because of pairing effects. [1]
In cases of three isobars of sequential elements where the first and last are stable (this is often the case for even-even nuclides, see above), branched decay of the middle isobar may occur. For instance, radioactive iodine-126 has almost equal probabilities for two decay modes: positron emission , leading to tellurium-126 , and beta emission ...
Double beta decay in general is so rare that several nuclides exist which are predicted to decay by this mechanism but in which no such decay has yet been observed. Even in nuclides whose double beta decay has been confirmed through observations, half lives usually exceed the age of the universe by orders of magnitude, and emitted beta or gamma ...