Search results
Results from the WOW.Com Content Network
The calc-alkaline magma series is one of two main subdivisions of the subalkaline magma series, the other subalkaline magma series being the tholeiitic series. A magma series is a series of compositions that describes the evolution of a mafic magma, which is high in magnesium and iron and produces basalt or gabbro, as it fractionally crystallizes to become a felsic magma, which is low in ...
Bimodal volcanism is normally explained as a result of partial melting of the crust, creating granitic magmas, during the emplacement of large volumes of relatively hot basaltic magma from a mantle source. The two magma types then form separate magma chambers giving rise to periodic eruption of both types of lava. [7] [8]
Magma mixing is the process by which two magmas meet, comingle, and form a magma of a composition somewhere between the two end-member magmas. Magma mixing is a common process in volcanic magma chambers, which are open-system chambers where magmas enter the chamber, [ 10 ] undergo some form of assimilation, fractional crystallisation and ...
The tholeiitic magma series (/ ˌ θ oʊ l eɪ ˈ ɪ t ɪ k /) is one of two main magma series in subalkaline igneous rocks, the other being the calc-alkaline series. A magma series is a chemically distinct range of magma compositions that describes the evolution of a mafic magma into a more evolved, silica rich end member.
All alkaline series magmas are thought to have evolved from a primitive mafic alkaline magma, either an alkalic picrite basalt or an ankaramite. This evolves to an alkali olivine basalt or basanite. Thereafter the series branches to the sodic series, the potassic series, or the nephelinic, leucitic, and analcitic series. [1] [2]: Ch6
Basaltic magma is the most abundant in iron, magnesium, and calcium but the lowest in silica, potassium, and sodium. [1], [3] The composition of silica within basaltic magma ranges from 45-55 weight percent (wt.%), or mass fraction of a species. [1] It forms in temperatures ranging from approximately 1830 °F to 2200 °F.
Cinder Cliff in the northern fork of Tenchen Creek valley formed when an eruption of basaltic magma ponded against an ice dam and engulfed debris such as moraine and talus. [166] The other two eruptive centres, Icefall Cone and Ridge Cone , consist of bombs and agglutinate ; they have been glaciated and are poorly exposed.
A typical theory is as follows: partial melting of the mantle generates a basaltic magma, which does not immediately ascend into the crust. Instead, the basaltic magma forms a large magma chamber at the base of the crust and fractionates large amounts of mafic minerals, which sink to the bottom of the chamber. The co-crystallizing plagioclase ...