Search results
Results from the WOW.Com Content Network
A tag of 2 indicates that the following byte string encodes an unsigned bignum. A tag of 32 indicates that the following text string is a URI as defined in RFC 3986. RFC 8746 defines tags 64–87 to encode homogeneous arrays of fixed-size integer or floating-point values as byte strings. The tag 55799 is allocated to mean "CBOR data follows".
Files that contain machine-executable code and non-textual data typically contain all 256 possible eight-bit byte values. Many computer programs came to rely on this distinction between seven-bit text and eight-bit binary data, and would not function properly if non-ASCII characters appeared in data that was expected to include only ASCII text ...
On x86 and x86-64, the most common C/C++ compilers implement long double as either 80-bit extended precision (e.g. the GNU C Compiler gcc [13] and the Intel C++ Compiler with a /Qlong‑double switch [14]) or simply as being synonymous with double precision (e.g. Microsoft Visual C++ [15]), rather than as quadruple precision.
Sign bit: 1 bit; Exponent: 11 bits; Significand precision: 53 bits (52 explicitly stored) The sign bit determines the sign of the number (including when this number is zero, which is signed). The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023 represents the actual zero. Exponents range ...
Each string ends at the first occurrence of the zero code unit of the appropriate kind (char or wchar_t).Consequently, a byte string (char*) can contain non-NUL characters in ASCII or any ASCII extension, but not characters in encodings such as UTF-16 (even though a 16-bit code unit might be nonzero, its high or low byte might be zero).
In 2003, 64-bit CPUs were introduced to the mainstream PC market in the form of x86-64 processors and the PowerPC G5. A 64-bit register can hold any of 2 64 (over 18 quintillion or 1.8×10 19) different values. The range of integer values that can be stored in 64 bits depends on the integer representation used.
Usually, the 32-bit and 64-bit IEEE 754 binary floating-point formats are used for float and double respectively. The C99 standard includes new real floating-point types float_t and double_t, defined in <math.h>. They correspond to the types used for the intermediate results of floating-point expressions when FLT_EVAL_METHOD is 0, 1, or 2.
The IBM System/360 supports a 32-bit "short" floating-point format and a 64-bit "long" floating-point format. [4] The 360/85 and follow-on System/370 add support for a 128-bit "extended" format. [5] These formats are still supported in the current design, where they are now called the "hexadecimal floating-point" (HFP) formats.