Search results
Results from the WOW.Com Content Network
Thus the loop will always result in x = 2 and will never break. This could be fixed by moving the x = 1 instruction outside the loop so that its initial value is set only once. In some languages, programmer confusion about mathematical symbols may lead to an unintentional infinite loop. For example, here is a snippet in C:
Both Python's for and while loops support such an else clause, which is executed only if early exit of the loop has not occurred. Some languages support breaking out of nested loops; in theory circles, these are called multi-level breaks. One common use example is searching a multi-dimensional table.
For example, one could define a dictionary having a string "toast" mapped to the integer 42 or vice versa. The keys in a dictionary must be of an immutable Python type, such as an integer or a string, because under the hood they are implemented via a hash function. This makes for much faster lookup times, but requires keys not change.
Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c. Python uses and, or, and not as Boolean operators. Python has a type of expression named a list comprehension, and a more general expression named a generator expression. [78]
In mathematics, a function is said to vanish at infinity if its values approach 0 as the input grows without bounds. There are two different ways to define this with one definition applying to functions defined on normed vector spaces and the other applying to functions defined on locally compact spaces .
The register width of a processor determines the range of values that can be represented in its registers. Though the vast majority of computers can perform multiple-precision arithmetic on operands in memory, allowing numbers to be arbitrarily long and overflow to be avoided, the register width limits the sizes of numbers that can be operated on (e.g., added or subtracted) using a single ...
An infimum of a set is always and only defined relative to a superset of the set in question. For example, there is no infimum of the positive real numbers inside the positive real numbers (as their own superset), nor any infimum of the positive real numbers inside the complex numbers with positive real part.
Similarly, a regularly varying function is a function of a real variable whose behaviour at infinity is similar to the behaviour of a power law function (like a polynomial) near infinity. These classes of functions were both introduced by Jovan Karamata , [ 1 ] [ 2 ] and have found several important applications, for example in probability theory .