enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    The centipoise is convenient because the viscosity of water at 20 °C is about 1 cP, and one centipoise is equal to the SI millipascal second (mPa·s). The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir ...

  3. Temperature dependence of viscosity - Wikipedia

    en.wikipedia.org/wiki/Temperature_dependence_of...

    Viscosity depends strongly on temperature. In liquids it usually decreases with increasing temperature, whereas, in most gases, viscosity increases with increasing temperature. This article discusses several models of this dependence, ranging from rigorous first-principles calculations for monatomic gases, to empirical correlations for liquids.

  4. List of viscosities - Wikipedia

    en.wikipedia.org/wiki/List_of_viscosities

    For kinematic viscosity, the SI unit is m^2/s. In engineering, the unit is usually Stoke or centiStoke, with 1 Stoke = 0.0001 m^2/s, and 1 centiStoke = 0.01 Stoke. For liquid, the dynamic viscosity is usually in the range of 0.001 to 1 Pascal-second, or 1 to 1000 centiPoise. The density is usually on the order of 1000 kg/m^3, i.e. that of water.

  5. Darcy's law - Wikipedia

    en.wikipedia.org/wiki/Darcy's_law

    Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences. It is analogous to Ohm's law in electrostatics, linearly relating the volume ...

  6. Viscosity models for mixtures - Wikipedia

    en.wikipedia.org/wiki/Viscosity_models_for_mixtures

    Viscosity models for mixtures. The shear viscosity (or viscosity, in short) of a fluid is a material property that describes the friction between internal neighboring fluid surfaces (or sheets) flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move ...

  7. Schmidt number - Wikipedia

    en.wikipedia.org/wiki/Schmidt_number

    In fluid dynamics, the Schmidt number (denoted Sc) of a fluid is a dimensionless number defined as the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity, and it is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes. It was named after German engineer Ernst ...

  8. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    A is the pipe's cross-sectional area (A = ⁠ πD 2 / 4 ⁠) (m 2), u is the mean velocity of the fluid (m/s), μ (mu) is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)), ν (nu) is the kinematic viscosity (ν = ⁠ μ / ρ ⁠) (m 2 /s), ρ (rho) is the density of the fluid (kg/m 3), W is the mass flowrate of the fluid (kg/s).

  9. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/(m·s)); Q is the volumetric flow rate, used here to measure flow instead of mean velocity according to Q = ⁠ π / 4 ⁠ D c 2 <v> (m 3 /s). Note that this laminar form of Darcy–Weisbach is equivalent to the Hagen–Poiseuille equation, which is analytically derived from the ...