Search results
Results from the WOW.Com Content Network
Open energy-system models are energy-system models that are open source. [a] However, some of them may use third-party proprietary software as part of their workflows to input, process, or output data. Preferably, these models use open data, which facilitates open science.
Power transmission is usually performed with overhead lines as this is the most economical way to do so. Underground transmission by high-voltage cables is chosen in crowded urban areas and in high-voltage direct-current (HVDC) submarine connections.
In a spark gap Tesla coil, the primary-to-secondary energy transfer process happens repetitively at typical pulsing rates of 50–500 times per second, depending on the frequency of the input line voltage. At these rates, previously-formed leader channels do not get a chance to fully cool down between pulses.
[1] [2] [3] The wheeling provider, or utility, receives compensation for the service and for electricity losses incurred in the transmission. As an economic concept, wheeling combines the traits of opposing designs of the electricity market: as a regulated public utility and a competitive market. [1] Two types of wheeling are:
The SET rate follows the inverse of the fourth power of the distance [2] = where is the donor emission lifetime; is the distance between donor-acceptor; is the distance at which SET efficiency decreases to 50% (i.e., equal probability of energy transfer and spontaneous emission).
In chemistry, adiabatic electron-transfer is a type of oxidation-reduction process. The mechanism is ubiquitous in nature in both the inorganic and biological spheres. Adiabatic electron-transfers proceed without making or breaking chemical bonds. Adiabatic electron-transfer can occur by either optical or thermal mechanisms.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Electrostatic machines are typically used in science classrooms to safely demonstrate electrical forces and high voltage phenomena. The elevated potential differences achieved have been also used for a variety of practical applications, such as operating X-ray tubes, particle accelerators, spectroscopy, medical applications, sterilization of food, and nuclear physics experiments.