enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    This constitutive equation is also called the Newton law of viscosity. The total stress tensor σ {\displaystyle {\boldsymbol {\sigma }}} can always be decomposed as the sum of the isotropic stress tensor and the deviatoric stress tensor ( σ ′ {\displaystyle {\boldsymbol {\sigma }}'} ):

  3. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    Newton's law of viscosity is not a fundamental law of nature, but rather a constitutive equation (like Hooke's law, Fick's law, and Ohm's law) which serves to define the viscosity . Its form is motivated by experiments which show that for a wide range of fluids, μ {\displaystyle \mu } is independent of strain rate.

  4. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    where τ zx is the flux of x-directed momentum in the z-direction, ν is μ/ρ, the momentum diffusivity, z is the distance of transport or diffusion, ρ is the density, and μ is the dynamic viscosity. Newton's law of viscosity is the simplest relationship between the flux of momentum and the velocity gradient.

  5. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    This is constitutive equation is also called the Newtonian law of viscosity. Dynamic viscosity μ need not be constant – in incompressible flows it can depend on density and on pressure. Any equation that makes explicit one of these transport coefficient in the conservative variables is called an equation of state. [8]

  6. Generalized Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Generalized_Newtonian_fluid

    The quantity represents an apparent viscosity or effective viscosity as a function of the shear rate. The most commonly used types of generalized Newtonian fluids are: [1] Power-law fluid; Cross fluid; Carreau fluid; Bingham fluid

  7. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

  8. Non-Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Non-Newtonian_fluid

    In physics and chemistry, a non-Newtonian fluid is a fluid that does not follow Newton's law of viscosity, that is, it has variable viscosity dependent on stress. In particular, the viscosity of non-Newtonian fluids can change when subjected to force. Ketchup, for example

  9. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    The viscosity of the sample is then calculated using the following equation: = ˙ where is the sample viscosity, and is the force applied to the sample to pull it apart. Much like the Meissner-type rheometer, the SER rheometer uses a set of two rollers to strain a sample at a given rate. [ 31 ]