enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carbon–carbon bond - Wikipedia

    en.wikipedia.org/wiki/Carboncarbon_bond

    A carboncarbon bond is a covalent bond between two carbon atoms. [1] The most common form is the single bond: a bond composed of two electrons, one from each of the two atoms. The carboncarbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms. In ethane, the orbitals are sp 3 ...

  3. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Checked. In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory. For example, in a carbon atom which forms four ...

  4. Cycloalkane - Wikipedia

    en.wikipedia.org/wiki/Cycloalkane

    Cycloalkane. Ball-and-stick model of cyclobutane. In organic chemistry, the cycloalkanes (also called naphthenes, but distinct from naphthalene) are the monocyclic saturated hydrocarbons. [1] In other words, a cycloalkane consists only of hydrogen and carbon atoms arranged in a structure containing a single ring (possibly with side chains), and ...

  5. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    In particular, Pauling introduced the concept of hybridisation, where atomic s and p orbitals are combined to give hybrid sp, sp 2, and sp 3 orbitals. Hybrid orbitals proved powerful in explaining the molecular geometries of simple molecules like methane, which is tetrahedral with an sp 3 carbon atom and bond angles of 109.5° between the four ...

  6. Alkyne - Wikipedia

    en.wikipedia.org/wiki/Alkyne

    In the language of valence bond theory, the carbon atoms in an alkyne bond are sp hybridized: they each have two unhybridized p orbitals and two sp hybrid orbitals. Overlap of an sp orbital from each atom forms one spsp sigma bond. Each p orbital on one atom overlaps one on the other atom, forming two pi bonds, giving a total of three bonds ...

  7. Fullerene - Wikipedia

    en.wikipedia.org/wiki/Fullerene

    The sp 2-hybridized carbon atoms, which are at their energy minimum in planar graphite, must be bent to form the closed sphere or tube, which produces angle strain. The characteristic reaction of fullerenes is electrophilic addition at 6,6-double bonds, which reduces angle strain by changing sp 2 -hybridized carbons into sp 3 -hybridized ones.

  8. Double bond - Wikipedia

    en.wikipedia.org/wiki/Double_bond

    The type of bonding can be explained in terms of orbital hybridisation. In ethylene each carbon atom has three sp 2 orbitals and one p-orbital. The three sp 2 orbitals lie in a plane with ~120° angles. The p-orbital is perpendicular to this plane. When the carbon atoms approach each other, two of the sp 2 orbitals overlap to form a sigma bond.

  9. Stereocenter - Wikipedia

    en.wikipedia.org/wiki/Stereocenter

    Stereocenter. In stereochemistry, a stereocenter of a molecule is an atom (center), axis or plane that is the focus of stereoisomerism; that is, when having at least three different groups bound to the stereocenter, interchanging any two different groups creates a new stereoisomer. [1][2] Stereocenters are also referred to as stereogenic centers.