enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    The equation defining a plane curve expressed in polar coordinates is known as a polar equation. In many cases, such an equation can simply be specified by defining r as a function of φ. The resulting curve then consists of points of the form (r(φ), φ) and can be regarded as the graph of the polar function r.

  3. Elliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Elliptic_coordinate_system

    The classic applications of elliptic coordinates are in solving partial differential equations, e.g., Laplace's equation or the Helmholtz equation, for which elliptic coordinates are a natural description of a system thus allowing a separation of variables in the partial differential equations. Some traditional examples are solving systems such ...

  4. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system— shown here in the mathematics convention —the sphere is adapted as a unit sphere , where the radius is set to unity and then can generally be ...

  5. Flattening - Wikipedia

    en.wikipedia.org/wiki/Flattening

    A circle of radius a compressed to an ellipse. A sphere of radius a compressed to an oblate ellipsoid of revolution. Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution respectively. Other terms used are ellipticity, or oblateness.

  6. Elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve

    Graphs of curves y 2 = x 3 − x and y 2 = x 3 − x + 1. Although the formal definition of an elliptic curve requires some background in algebraic geometry, it is possible to describe some features of elliptic curves over the real numbers using only introductory algebra and geometry.

  7. Jacobi elliptic functions - Wikipedia

    en.wikipedia.org/wiki/Jacobi_elliptic_functions

    The solid curve is the ellipse, with m = 1 − 1/b 2 and u = F(φ,m) where F(⋅,⋅) is the elliptic integral of the first kind (with parameter =). The dotted curve is the unit circle. Tangent lines from the circle and ellipse at x = cd crossing the x-axis at dc are shown in light grey.

  8. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-minor axis of an ellipse runs from the center of the ellipse (a point halfway between and on the line running between the foci) to the edge of the ellipse. The semi-minor axis is half of the minor axis. The minor axis is the longest line segment perpendicular to the major axis that connects two points on the ellipse's edge.

  9. Elliptic geometry - Wikipedia

    en.wikipedia.org/wiki/Elliptic_geometry

    The distance formula is homogeneous in each variable, with d(λu, μv) = d(u, v) if λ and μ are non-zero scalars, so it does define a distance on the points of projective space. A notable property of the projective elliptic geometry is that for even dimensions, such as the plane, the geometry is non-orientable. It erases the distinction ...