Search results
Results from the WOW.Com Content Network
Gibbs' entropy increase mechanism solves some of the technical difficulties found in Boltzmann's H-theorem: The Gibbs entropy does not fluctuate nor does it exhibit Poincare recurrence, and so the increase in Gibbs entropy, when it occurs, is therefore irreversible as expected from thermodynamics. The Gibbs mechanism also applies equally well ...
It is in this sense that entropy is a measure of the energy in a system that cannot be used to do work. An irreversible process degrades the performance of a thermodynamic system, designed to do work or produce cooling, and results in entropy production. The entropy generation during a reversible process is zero. Thus entropy production is a ...
A representation of Hess's law (where H represents enthalpy) Hess's law of constant heat summation, also known simply as Hess's law, is a relationship in physical chemistry and thermodynamics [1] named after Germain Hess, a Swiss-born Russian chemist and physician who published it in 1840.
Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [22] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.
Different notations are used for an infinitesimal amount of heat () and infinitesimal change of entropy () because entropy is a function of state, while heat, like work, is not. For an actually possible infinitesimal process without exchange of mass with the surroundings, the second law requires that the increment in system entropy fulfills the ...
Entropy has been historically, e.g. by Clausius and Helmholtz, associated with disorder. However, in common speech, order is used to describe organization, structural regularity, or form, like that found in a crystal compared with a gas. This commonplace notion of order is described quantitatively by Landau theory.
Entropy cannot be measured directly. The change in entropy with respect to pressure at a constant temperature is the same as the negative change in specific volume with respect to temperature at a constant pressure, for a simple compressible system. Maxwell relations in thermodynamics are often used to derive thermodynamic relations. [2]
The thermodynamic square can be used as a tool to recall and derive some of the thermodynamic potentials based on conjugate variables. In the above description, the product of two conjugate variables yields an energy. In other words, the conjugate pairs are conjugate with respect to energy.