Search results
Results from the WOW.Com Content Network
Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also. As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the ...
An indicator function or a characteristic function of a subset A of a set S with the cardinality | S | = n is a function from S to the two-element set {0, 1}, denoted as I A : S → {0, 1}, and it indicates whether an element of S belongs to A or not; If x in S belongs to A, then I A (x) = 1, and 0 otherwise.
Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this ...
Bijective function from N to the set E of even numbers. Although E is a proper subset of N, both sets have the same cardinality. N does not have the same cardinality as its power set P(N): For every function f from N to P(N), the set T = {n∈N: n∉f(n)} disagrees with every set in the range of f, hence f cannot be surjective.
The example mapping f happens to correspond to the example enumeration s in the picture above. A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as ...
A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null , the smallest infinite cardinal In mathematics , a cardinal number , or cardinal for short, is what is commonly called the number of elements of a set .
In modern set theory, we usually use the Von Neumann cardinal assignment, which uses the theory of ordinal numbers and the full power of the axioms of choice and replacement. Cardinal assignments do need the full axiom of choice, if we want a decent cardinal arithmetic and an assignment for all sets.
The set of all subsets of N is denoted by P(N), the power set of N. Cantor generalized his argument to an arbitrary set A and the set consisting of all functions from A to {0, 1}. [4] Each of these functions corresponds to a subset of A, so his generalized argument implies the theorem: The power set P(A) has greater cardinality than A.