enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, [4] and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering , navigation , physics , and geometry .

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    However, the discriminant of this equation is positive, so this equation has three real roots (of which only one is the solution for the cosine of the one-third angle). None of these solutions are reducible to a real algebraic expression , as they use intermediate complex numbers under the cube roots .

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  5. Mnemonics in trigonometry - Wikipedia

    en.wikipedia.org/wiki/Mnemonics_in_trigonometry

    Write the functions without "co" on the three left outer vertices (from top to bottom: sine, tangent, secant) Write the co-functions on the corresponding three right outer vertices (cosine, cotangent, cosecant) Starting at any vertex of the resulting hexagon: The starting vertex equals one over the opposite vertex.

  6. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-". [ 32 ] With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines . [ 33 ]

  7. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent. They are commonly denoted by the symbols for the hyperbolic functions, prefixed with arc- or ar- , or with a superscript − 1 {\displaystyle {-1 ...

  8. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    The secants ′ ¯, ′ ¯ become tangents at the points ,. The tangents intercept at the radical line p {\displaystyle p} (in the diagram yellow). Similar considerations generate the second tangent circle, that meets the given circles at the points G 1 , H 2 {\displaystyle G_{1},H_{2}} (see diagram).

  9. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...