Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
Several theorems related to the triangle were known, including the binomial theorem. Khayyam used a method of finding nth roots based on the binomial expansion, and therefore on the binomial coefficients. [1] Pascal's triangle was known in China during the 11th century through the work of the Chinese mathematician Jia Xian (1010–1070).
The Gaussian binomial coefficient, written as () or [], is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian (,).
in which form it is clearly recognizable as an umbral variant of the binomial theorem (for more on umbral variants of the binomial theorem, see binomial type). The Chu–Vandermonde identity can also be seen to be a special case of Gauss's hypergeometric theorem, which states that
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
In addition, if is a positive integer, then there is no need for a branch cut: one may define () =, or define positive integral complex powers through complex multiplication, and show that ′ = for all complex , from the definition of the derivative and the binomial theorem.
The binomial distribution is the PMF of k successes given n independent events each with a probability p of success. Mathematically, when α = k + 1 and β = n − k + 1, the beta distribution and the binomial distribution are related by [clarification needed] a factor of n + 1: