enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sellmeier equation - Wikipedia

    en.wikipedia.org/wiki/Sellmeier_equation

    The Sellmeier equation is an empirical relationship between refractive index and wavelength for a particular transparent medium. The equation is used to determine the dispersion of light in the medium. It was first proposed in 1872 by Wolfgang Sellmeier and was a development of the work of Augustin Cauchy on Cauchy's equation for modelling ...

  3. Aluminium oxide (data page) - Wikipedia

    en.wikipedia.org/wiki/Aluminium_oxide_(data_page)

    Table of Coefficients of Sellmeier equation; Coefficient: for ordinary wave: for extraordinary wave: B 1: 1.43134930: 1.5039759 B 2: ... Liquid properties Std ...

  4. Refractive index and extinction coefficient of thin film ...

    en.wikipedia.org/wiki/Refractive_index_and...

    An expression for n as a function of photon energy, symbolically written as n(E), is then determined from the expression for k(E) in accordance to the Kramers–Kronig relations [4] which states that n(E) is the Hilbert transform of k(E). The Forouhi–Bloomer dispersion equations for n(E) and k(E) of amorphous materials are given as:

  5. Wolfgang Sellmeier - Wikipedia

    en.wikipedia.org/wiki/Wolfgang_Sellmeier

    Wolfgang Sellmeier was a German theoretical physicist who made major contributions to the understanding of the interactions between light and matter. [1] In 1872 he published his seminal work Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien. [2]

  6. Optical glass - Wikipedia

    en.wikipedia.org/wiki/Optical_glass

    Several laws have approximated this relationship to wavelength, notably Cauchy's law and Sellmeier equation. The refractive index of a glass is given for the yellow line known as the d line of helium (then noted n d) or for the green e line of mercury (then noted n e), depending on usage and the two main standards used. [9] [10] [11]

  7. State of matter - Wikipedia

    en.wikipedia.org/wiki/State_of_matter

    Forms of matter that are not composed of molecules and are organized by different forces can also be considered different states of matter. Superfluids (like Fermionic condensate) and the quark–gluon plasma are examples. In a chemical equation, the state of matter of the chemicals may be shown as (s) for solid, (l) for liquid, and (g) for gas.

  8. Thermodynamic diagrams - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_diagrams

    Thermodynamic diagrams are diagrams used to represent the thermodynamic states of a material (typically fluid) and the consequences of manipulating this material. For instance, a temperature– entropy diagram ( T–s diagram ) may be used to demonstrate the behavior of a fluid as it is changed by a compressor.

  9. Phase diagram - Wikipedia

    en.wikipedia.org/wiki/Phase_diagram

    A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous states) occur and coexist at equilibrium.