Search results
Results from the WOW.Com Content Network
Z tables use at least three different conventions: Cumulative from mean gives a probability that a statistic is between 0 (mean) and Z. Example: Prob(0 ≤ Z ≤ 0.69) = 0.2549. Cumulative gives a probability that a statistic is less than Z. This equates to the area of the distribution below Z. Example: Prob(Z ≤ 0.69) = 0.7549. Complementary ...
Z function in the complex plane, zoomed out. In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function.
An important example of the unilateral Z-transform is the probability-generating function, where the component [] is the probability that a discrete random variable takes the value. The properties of Z-transforms (listed in § Properties) have useful interpretations in the context of probability theory.
Z-test tests the mean of a distribution. For each significance level in the confidence interval, the Z-test has a single critical value (for example, 1.96 for 5% two tailed) which makes it more convenient than the Student's t-test whose critical values are defined by the sample size (through the corresponding degrees of freedom). Both the Z ...
The Dirac comb of period 2 π, although not strictly a function, is a limiting form of many directional distributions. It is essentially a wrapped Dirac delta function. It represents a discrete probability distribution concentrated at 2 π n — a degenerate distribution — but the notation treats it as if it were a continuous distribution.
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
For example, the full zeta function exists at = (and is therefore finite there), but the corresponding series would be + + + …, whose partial sums would grow indefinitely large. The zeta function values listed below include function values at the negative even numbers ( s = −2 , −4 , etc. ), for which ζ ( s ) = 0 and which make up the so ...
In other words, if the same rational function appears more than once in the table, that rational function occupies a square block of cells within the table. This result is known as the block theorem. If a particular rational function occurs exactly once in the Padé table, it is called a normal approximant to f(z). If every entry in the ...