Search results
Results from the WOW.Com Content Network
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
In discrete calculus the indefinite sum operator (also known as the antidifference operator), denoted by or , [1] [2] is the linear operator, inverse of the forward difference operator. It relates to the forward difference operator as the indefinite integral relates to the derivative .
The following is a list of integrals (antiderivative functions) ... Assume (ax 2 + bx + c) cannot be reduced to the following expression (px + q) 2 for some p and q.
Many of the following antiderivatives have a term of the form ln |ax + b|.Because this is undefined when x = −b / a, the most general form of the antiderivative replaces the constant of integration with a locally constant function. [1]
The complete description of the Risch algorithm takes over 100 pages. [1] The Risch–Norman algorithm is a simpler, faster, but less powerful variant that was developed in 1976 by Arthur Norman. Some significant progress has been made in computing the logarithmic part of a mixed transcendental-algebraic integral by Brian L. Miller. [2]
This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.