Search results
Results from the WOW.Com Content Network
A Steinmetz curve is the curve of intersection of two right circular cylinders of radii and , whose axes intersect perpendicularly. In case of a = b {\displaystyle a=b} the Steimetz curves are the edges of a Steinmetz solid .
The surface-to-surface intersection (SSI) problem is a basic workflow in computer-aided geometric design: Given two intersecting surfaces in R 3, compute all parts of the intersection curve. If two surfaces intersect, the result will be a set of isolated points, a set of curves, a set of overlapping surfaces, or any combination of these cases. [1]
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
Intersection curve between polyhedrons: three houses Intersection of polyhedrons: two tori. The intersection curve of two polyhedrons is a polygon (see intersection of three houses). The display of a parametrically defined surface is usually done by mapping a rectangular net into 3-space. The spatial quadrangles are nearly flat.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
The term “cylinder” can refer to a three-dimensional solid or, as in this article, only the curved external surface of the solid. This is why a line piercing a cylinder's volume is considered to have two points of intersection: the surface point where it enters and the one where it leaves.
An intersection point between two arcs is transverse if and only if it is not a tangency, i.e., their tangent lines inside the tangent plane to the surface are distinct. In a three-dimensional space, two curves can be transverse only when they have empty intersection, since their tangent spaces could generate at most a two-dimensional space.
Similarly, [3] if C is a smooth curve on the quadric surface P 1 ×P 1 with bidegree (d 1,d 2) (meaning d 1,d 2 are its intersection degrees with a fiber of each projection to P 1), since the canonical class of P 1 ×P 1 has bidegree (−2,−2), the adjunction formula shows that the canonical class of C is the intersection product of divisors ...