Search results
Results from the WOW.Com Content Network
Optical depth and actual depth, and respectively, can vary widely depending on the absorptivity of the astrophysical environment. Indeed, τ {\displaystyle \tau } is able to show the relationship between these two quantities and can lead to a greater understanding of the structure inside a star .
Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. [1] Optical depth is dimensionless , and in particular is not a length, though it is a monotonically increasing function of optical path length , and approaches zero as the path length ...
An optical effect seen in stars (including the Sun), where the center part of the disk appears brighter than the edge or limb of the image. line of apsides The imaginary line connecting the two apsides (the periapsis and the apoapsis) of an elliptical orbit, and which therefore represents the distance of the orbit's longest axis. Lobster-eye optics
A branch of physics that studies atoms as isolated systems of electrons and an atomic nucleus. Compare nuclear physics. atomic structure atomic weight (A) The sum total of protons (or electrons) and neutrons within an atom. audio frequency A periodic vibration whose frequency is in the band audible to the average human, the human hearing range.
Solar radius is a unit of distance used to express the size of stars in astronomy relative to the Sun.The solar radius is usually defined as the radius to the layer in the Sun's photosphere where the optical depth equals 2/3: [1]
The density, mass, and location of the objects in these lens populations determines the frequency of microlensing along that line of sight, which is characterized by a value known as the optical depth due to microlensing. (This is not to be confused with the more common meaning of optical depth, although it shares some properties.) The optical ...
The Sun is composed primarily of the chemical elements hydrogen and helium; they account for 74.9% and 23.8%, respectively, of the mass of the Sun in the photosphere.All heavier elements, colloquially called metals in stellar astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant.
The explanation is that the interstellar medium is optically thin. Starlight traveling through a kiloparsec column undergoes about a magnitude of extinction, so that the optical depth ~ 1. An optical depth of 1 corresponds to a mean free path, which is the distance, on average that a photon travels before scattering from a dust grain.