Search results
Results from the WOW.Com Content Network
Example implementations demonstrating the nested sampling algorithm are publicly available for download, written in several programming languages. Simple examples in C, R, or Python are on John Skilling's website. A Haskell port of the above simple codes is on Hackage.
Undersampling with ensemble learning. A recent study shows that the combination of Undersampling with ensemble learning can achieve better results, see IFME: information filtering by multiple examples with under-sampling in a digital library environment. [10]
Online learning is a common technique used in areas of machine learning where it is computationally infeasible to train over the entire dataset, requiring the need of out-of-core algorithms. It is also used in situations where it is necessary for the algorithm to dynamically adapt to new patterns in the data, or when the data itself is ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Regular languages are a category of languages (sometimes termed Chomsky Type 3) which can be matched by a state machine (more specifically, by a deterministic finite automaton or a nondeterministic finite automaton) constructed from a regular expression. In particular, a regular language can match constructs like "A follows B", "Either A or B ...
For the following definitions, two examples will be used. The first is the problem of character recognition given an array of n {\displaystyle n} bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as ...
MILEPOST GCC is a free, community-driven, open-source, adaptive, self-tuning compiler that combines stable production-quality GCC, Interactive Compilation Interface and machine learning plugins to adapt to any given architecture and program automatically and predict profitable optimizations to improve program execution time, code size and compilation time.
For example, imagine that a model consists of three variables A, B, and C. A simple Gibbs sampler would sample from p(A | B,C), then p(B | A,C), then p(C | A,B). A collapsed Gibbs sampler might replace the sampling step for A with a sample taken from the marginal distribution p(A | C), with variable B integrated out