Search results
Results from the WOW.Com Content Network
matrix is symmetric matrix.; matrix is persymmetric matrix, i.e. it is symmetric with respect to the northeast-to-southwest diagonal too.; Every one row and column of matrix consists all n elements of given vector without repetition.
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
Adjugate matrix: Transpose of the cofactor matrix: The inverse of a matrix is its adjugate matrix divided by its determinant: Augmented matrix: Matrix whose rows are concatenations of the rows of two smaller matrices: Used for performing the same row operations on two matrices Bézout matrix: Square matrix whose determinant is the resultant of ...
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: a + i b ≡ ...
1. Transpose: if A is a matrix, denotes the transpose of A, that is, the matrix obtained by exchanging rows and columns of A. Notation is also used. The symbol is often replaced by the letter T or t. 2. For inline uses of the symbol, see ⊤. ⊥ 1.
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j: = ¯
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...