enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    The dimension of this vector space, if it exists, [a] is called the degree of the extension. For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b]

  3. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  4. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.

  5. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    If : is a linear operator between topological vector spaces (TVSs) then we say that is a closed operator if the graph of is closed in when is endowed with the product topology. The closed graph theorem is an important result in functional analysis that guarantees that a closed linear operator is continuous under certain conditions.

  6. Subalgebra - Wikipedia

    en.wikipedia.org/wiki/Subalgebra

    In mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations. "Algebra", when referring to a structure, often means a vector space or module equipped with an additional bilinear operation.

  7. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  8. Flour Bugs Are a Real Thing—Here’s an Easy Way to ... - AOL

    www.aol.com/lifestyle/flour-bugs-real-thing-easy...

    In this case, the pesky bugs, which are actually called weevils, infest the whole kernels and lay eggs in the wheat grains before it's been milled into flour, Quoc Le tells Delish.

  9. Convex cone - Wikipedia

    en.wikipedia.org/wiki/Convex_cone

    A subset of a vector space over an ordered field is a cone (or sometimes called a linear cone) if for each in and positive scalar in , the product is in . [2] Note that some authors define cone with the scalar ranging over all non-negative scalars (rather than all positive scalars, which does not include 0). [3]