Search results
Results from the WOW.Com Content Network
A gravity turn is commonly used with rocket powered vehicles that launch vertically, like the Space Shuttle. The rocket begins by flying straight up, gaining both vertical speed and altitude. During this portion of the launch, gravity acts directly against the thrust of the rocket, lowering its vertical acceleration.
Most rockets need to be supported and held down for a few seconds after ignition while the engines build up to full thrust. The vehicle is commonly held on the pad by hold-down arms or explosive bolts, which are triggered when the vehicle is stable and ready to fly, at which point all umbilical connections with the pad are released. [2]
LVDC from Instrument Unit technical manual. The Launch Vehicle Digital Computer (LVDC) was a computer that provided the autopilot for the Saturn V rocket from launch, through Canary Islands orbit insertion, and the trans-lunar injection burn that would send the Apollo spacecraft to the Moon.
A pad abort occurred after ignition of the shuttle's main engines but prior to liftoff. An abort during ascent that would result in the orbiter returning to a runway or to an orbit lower than planned was called an "intact abort", while an abort in which the orbiter would be unable to reach a runway, or any abort involving the failure of more ...
The world’s first 3D-printed rocket made it off the launch pad but failed to reach orbit in a key test flight by aerospace startup Relativity Space.
Ariane flight V88 [1] was the failed maiden flight of the Arianespace Ariane 5 rocket, vehicle no. 501, on 4 June 1996. It carried the Cluster spacecraft, a constellation of four European Space Agency research satellites.
A launch vehicle is typically a rocket-powered vehicle designed to carry a payload (a crewed spacecraft or satellites) from Earth's surface or lower atmosphere to outer space. The most common form is the ballistic missile-shaped multistage rocket, but the term is more general and also encompasses vehicles like the Space Shuttle.
A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.