enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent can also be used to solve a system of nonlinear equations. Below is an example that shows how to use the gradient descent to solve for three unknown variables, x 1, x 2, and x 3. This example shows one iteration of the gradient descent. Consider the nonlinear system of equations

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    First, regression analysis is widely used for prediction and forecasting, where its use has substantial overlap with the field of machine learning. Second, in some situations regression analysis can be used to infer causal relationships between the independent and dependent variables. Importantly, regressions by themselves only reveal ...

  4. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  5. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Strictly speaking, the term backpropagation refers only to an algorithm for efficiently computing the gradient, not how the gradient is used; but the term is often used loosely to refer to the entire learning algorithm – including how the gradient is used, such as by stochastic gradient descent, or as an intermediate step in a more ...

  6. Mean shift - Wikipedia

    en.wikipedia.org/wiki/Mean_shift

    Instead, mean shift uses a variant of what is known in the optimization literature as multiple restart gradient descent. Starting at some guess for a local maximum, y k {\displaystyle y_{k}} , which can be a random input data point x 1 {\displaystyle x_{1}} , mean shift computes the gradient of the density estimate f ( x ) {\displaystyle f(x ...

  7. Ordination (statistics) - Wikipedia

    en.wikipedia.org/wiki/Ordination_(statistics)

    Ordination or gradient analysis, in multivariate analysis, is a method complementary to data clustering, and used mainly in exploratory data analysis (rather than in hypothesis testing). In contrast to cluster analysis, ordination orders quantities in a (usually lower-dimensional) latent space. In the ordination space, quantities that are near ...

  8. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    In 1967, Shun'ichi Amari reported [22] the first multilayered neural network trained by stochastic gradient descent, which was able to classify non-linearily separable pattern classes. Amari's student Saito conducted the computer experiments, using a five-layered feedforward network with two learning layers. [13]

  9. Early stopping - Wikipedia

    en.wikipedia.org/wiki/Early_stopping

    Gradient descent methods are first-order, iterative, optimization methods. Each iteration updates an approximate solution to the optimization problem by taking a step in the direction of the negative of the gradient of the objective function.