enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radical (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Radical_(chemistry)

    In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. [1] [2] With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.

  3. Captodative effect - Wikipedia

    en.wikipedia.org/wiki/Captodative_effect

    The rate of the addition reaction was accelerated by the following EDGs in increasing order: H < CH 3 < OCH 2 CH 3. When R = OCH 2 CH 3, the rate of the reaction is the fastest because the reaction has the smallest energy of activation (ΔG ‡). The ethoxy and cyano groups are able to delocalize the radical ion in the transition state, thus ...

  4. Hydroxyl radical - Wikipedia

    en.wikipedia.org/wiki/Hydroxyl_radical

    The hydroxyl radical has a very short in vivo half-life of approximately 10 −9 seconds and a high reactivity. [5] This makes it a very dangerous compound to the organism. [6] [7] Unlike superoxide, which can be detoxified by superoxide dismutase, the hydroxyl radical cannot be eliminated by an enzymatic reaction.

  5. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Oxidative phosphorylation is made up of two closely connected components: the electron transport chain and chemiosmosis. The electron transport chain in the cell is the site of oxidative phosphorylation. The NADH and succinate generated in the citric acid cycle are oxidized, releasing the energy of O 2 to power the ATP synthase.

  6. Flavin adenine dinucleotide - Wikipedia

    en.wikipedia.org/wiki/Flavin_adenine_dinucleotide

    Mechanisms 3 and 4 radical formation and hydride loss. Radical species contain unpaired electron atoms and are very chemically active. Hydride loss is the inverse process of the hydride gain seen before. The final two mechanisms show nucleophilic addition and a reaction using a carbon radical.

  7. Free-radical addition - Wikipedia

    en.wikipedia.org/wiki/Free-radical_addition

    These reactions can happen due to the free radicals having an unpaired electron in their valence shell, making them highly reactive. [1] Radical additions are known for a variety of unsaturated substrates, both olefinic or aromatic and with or without heteroatoms. Free-radical reactions depend on one or more relatively weak bonds in a

  8. Radiation chemistry - Wikipedia

    en.wikipedia.org/wiki/Radiation_chemistry

    The base deprotonates the hydroxydimethylmethyl radical to be converted into acetone and a solvated electron, as the result the G value (yield for a given energy due to radiation deposited in the system) of chloride can be increased because the radiation now starts a chain reaction, each solvated electron formed by the action of the gamma rays ...

  9. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    Most experimentally observed reactions are built up from many elementary reactions that occur in parallel or sequentially. The actual sequence of the individual elementary reactions is known as reaction mechanism. An elementary reaction involves a few molecules, usually one or two, because of the low probability for several molecules to meet at ...