Search results
Results from the WOW.Com Content Network
A line starting on the left edge and tracing across the diagram to the right can be used to represent an interpolation formula if the following rules are followed: [5] Lozenge Diagram: geometric representation of polynomial interpolations. Left to right steps indicate addition whereas right to left steps indicate subtraction
With the n-th polynomial normalized to give P n (1) = 1, the i-th Gauss node, x i, is the i-th root of P n and the weights are given by the formula [3] = [′ ()]. Some low-order quadrature rules are tabulated below (over interval [−1, 1] , see the section below for other intervals).
The next, "corrector" step refines the initial approximation by using the predicted value of the function and another method to interpolate that unknown function's value at the same subsequent point. Predictor–corrector methods for solving ODEs
The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.
Newton's form has the simplicity that the new points are always added at one end: Newton's forward formula can add new points to the right, and Newton's backward formula can add new points to the left. The accuracy of polynomial interpolation depends on how close the interpolated point is to the middle of the x values of the set of points used ...
Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally spaced points. The integrand must have continuous derivatives, though fairly good results may be obtained if only a few derivatives exist.
The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...