Search results
Results from the WOW.Com Content Network
Firstly, while the sample variance (using Bessel's correction) is an unbiased estimator of the population variance, its square root, the sample standard deviation, is a biased estimate of the population standard deviation; because the square root is a concave function, the bias is downward, by Jensen's inequality.
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) ...
[18] [19] Geary has shown, assuming that the mean and variance are finite, that the normal distribution is the only distribution where the mean and variance calculated from a set of independent draws are independent of each other. [20] [21] The normal distribution is a subclass of the elliptical distributions.
The larger the variance, the greater risk the security carries. Finding the square root of this variance will give the standard deviation of the investment tool in question. Financial time series are known to be non-stationary series, whereas the statistical calculations above, such as standard deviation, apply only to stationary series.
Squared deviations from the mean (SDM) result from squaring deviations.In probability theory and statistics, the definition of variance is either the expected value of the SDM (when considering a theoretical distribution) or its average value (for actual experimental data).
Variance (the square of the standard deviation) – location-invariant but not linear in scale. Variance-to-mean ratio – mostly used for count data when the term coefficient of dispersion is used and when this ratio is dimensionless, as count data are themselves dimensionless, not otherwise. Some measures of dispersion have specialized purposes.
which is an unbiased estimator of the variance of the mean in terms of the observed sample variance and known quantities. If the autocorrelations are identically zero, this expression reduces to the well-known result for the variance of the mean for independent data. The effect of the expectation operator in these expressions is that the ...
Let X (integrable) be a random variable with finite non-zero variance σ 2 (and thus finite expected value μ). [9] Then for any real number k > 0, (| |).Only the case > is useful. . When the right-hand side and the inequality is trivial as all probabilities are ≤