enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  3. Krylov subspace - Wikipedia

    en.wikipedia.org/wiki/Krylov_subspace

    In linear algebra, the order-r Krylov subspace generated by an n-by-n matrix A and a vector b of dimension n is the linear subspace spanned by the images of b under the first r powers of A (starting from =), that is, [1] [2]

  4. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    The simplest form of the formula for Steffensen's method occurs when it is used to find a zero of a real function; that is, to find the real value that satisfies () =.Near the solution , the derivative of the function, ′, is supposed to approximately satisfy < ′ <; this condition ensures that is an adequate correction-function for , for finding its own solution, although it is not required ...

  5. Zassenhaus algorithm - Wikipedia

    en.wikipedia.org/wiki/Zassenhaus_algorithm

    In mathematics, the Zassenhaus algorithm [1] is a method to calculate a basis for the intersection and sum of two subspaces of a vector space. It is named after Hans Zassenhaus, but no publication of this algorithm by him is known. [2] It is used in computer algebra systems. [3]

  6. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    When m = 1, that is when f : R n → R is a scalar-valued function, the Jacobian matrix reduces to the row vector; this row vector of all first-order partial derivatives of f is the transpose of the gradient of f, i.e. =.

  7. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    When the scalar field is the real numbers, the vector space is called a real vector space, and when the scalar field is the complex numbers, the vector space is called a complex vector space. [4] These two cases are the most common ones, but vector spaces with scalars in an arbitrary field F are also commonly considered.

  8. Function space - Wikipedia

    en.wikipedia.org/wiki/Function_space

    Let F be a field and let X be any set. The functions X → F can be given the structure of a vector space over F where the operations are defined pointwise, that is, for any f, g : X → F, any x in X, and any c in F, define (+) = + () = When the domain X has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure.

  9. Bilinear map - Wikipedia

    en.wikipedia.org/wiki/Bilinear_map

    In general, for a vector space V over a field F, a bilinear form on V is the same as a bilinear map V × V → F. If V is a vector space with dual space V ∗, then the canonical evaluation map, b(f, v) = f(v) is a bilinear map from V ∗ × V to the base field. Let V and W be vector spaces over the same base field F.