Search results
Results from the WOW.Com Content Network
If a known function has an asymptote, then the scaling of the function also have an asymptote. If y=ax+b is an asymptote of f(x), then y=cax+cb is an asymptote of cf(x) For example, f(x)=e x-1 +2 has horizontal asymptote y=0+2=2, and no vertical or oblique asymptotes.
An example of an important asymptotic result is the prime number theorem. Let π(x) denote the prime-counting function (which is not directly related to the constant pi), i.e. π(x) is the number of prime numbers that are less than or equal to x. Then the theorem states that .
In physics and other fields of science, one frequently comes across problems of an asymptotic nature, such as damping, orbiting, stabilization of a perturbed motion, etc. . Their solutions lend themselves to asymptotic analysis (perturbation theory), which is widely used in modern applied mathematics, mechanics and phy
In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .
The intuition of the delta method is that any such g function, in a "small enough" range of the function, can be approximated via a first order Taylor series (which is basically a linear function). If the random variable is roughly normal then a linear transformation of it is also normal. Small range can be achieved when approximating the ...
The inverse function only produces numerical values in the set of real numbers between its two asymptotes, which are now vertical instead of horizontal like in the forward Gompertz function. Outside of the range defined by the vertical asymptotes, the inverse function requires computing the logarithm of negative numbers.
Stirling's formula is in fact the first approximation to the following series (now called the Stirling series): [6]! (+ + +). An explicit formula for the coefficients in this series was given by G. Nemes. [ 7 ]
The basic truncus y = 1 / x 2 has asymptotes at x = 0 and y = 0, and every other truncus can be obtained from this one through a combination of translations and dilations. For the general truncus form above, the constant a dilates the graph by a factor of a from the x -axis; that is, the graph is stretched vertically when a > 1 and compressed ...