enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mertens function - Wikipedia

    en.wikipedia.org/wiki/Mertens_function

    In number theory, the Mertens function is defined for all positive integers n as = = (), where () is the Möbius function. The function is named in honour of Franz Mertens. This definition can be extended to positive real numbers as follows:

  3. Franz Mertens - Wikipedia

    en.wikipedia.org/wiki/Franz_Mertens

    Franz Mertens (20 March 1840 – 5 March 1927) (also known as Franciszek Mertens) was a Polish mathematician. He was born in Schroda in the Grand Duchy of Posen, Kingdom of Prussia (now Środa Wielkopolska, Poland) and died in Vienna, Austria. The Mertens function M(x) is the sum function for the Möbius function, in the theory of arithmetic ...

  4. Mertens' theorems - Wikipedia

    en.wikipedia.org/wiki/Mertens'_theorems

    Mertens' proof does not appeal to any unproved hypothesis (in 1874), and only to elementary real analysis. It comes 22 years before the first proof of the prime number theorem which, by contrast, relies on a careful analysis of the behavior of the Riemann zeta function as a function of a complex variable. Mertens' proof is in that respect ...

  5. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...

  6. Molecular descriptor - Wikipedia

    en.wikipedia.org/wiki/Molecular_descriptor

    The invariance properties of molecular descriptors can be defined as the ability of the algorithm for their calculation to give a descriptor value that is independent of the particular characteristics of the molecular representation, such as atom numbering or labeling, spatial reference frame, molecular conformations, etc. Invariance to molecular numbering or labeling is assumed as a minimal ...

  7. Meissel–Mertens constant - Wikipedia

    en.wikipedia.org/wiki/Meissel–Mertens_constant

    In the limit, the sum of the reciprocals of the primes < n and the function ln(ln n) are separated by a constant, the Meissel–Mertens constant (labelled M above). The Meissel–Mertens constant (named after Ernst Meissel and Franz Mertens), also referred to as the Mertens constant, Kronecker's constant (after Leopold Kronecker), Hadamard–de la Vallée-Poussin constant (after Jacques ...

  8. Mertens conjecture - Wikipedia

    en.wikipedia.org/wiki/Mertens_conjecture

    In mathematics, the Mertens conjecture is the statement that the Mertens function is bounded by . Although now disproven, it had been shown to imply the Riemann hypothesis . It was conjectured by Thomas Joannes Stieltjes , in an 1885 letter to Charles Hermite (reprinted in Stieltjes ( 1905 )), and again in print by Franz Mertens ( 1897 ), and ...

  9. Greek letters used in mathematics, science, and engineering

    en.wikipedia.org/wiki/Greek_letters_used_in...

    the stack alphabet in the formal definition of a pushdown automaton, or the tape-alphabet in the formal definition of a Turing machine; the Feferman–Schütte ordinal Γ 0; represents: the specific weight of substances; the lower incomplete gamma function; the third angle in a triangle, opposite the side c