Search results
Results from the WOW.Com Content Network
Initially, these subroutines used hard-coded loops for their low-level operations. For example, if a subroutine needed to perform a matrix multiplication, then the subroutine would have three nested loops. Linear algebra programs have many common low-level operations (the so-called "kernel" operations, not related to operating systems). [14]
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
Another method of multiplication is called Toom–Cook or Toom-3. The Toom–Cook method splits each number to be multiplied into multiple parts. The Toom–Cook method is one of the generalizations of the Karatsuba method. A three-way Toom–Cook can do a size-3N multiplication for the cost of five size-N multiplications. This accelerates the ...
In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm for matrix multiplication.It is faster than the standard matrix multiplication algorithm for large matrices, with a better asymptotic complexity, although the naive algorithm is often better for smaller matrices.
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.
The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...
This method is an efficient variant of the 2 k-ary method. For example, to calculate the exponent 398, which has binary expansion (110 001 110) 2 , we take a window of length 3 using the 2 k -ary method algorithm and calculate 1, x 3 , x 6 , x 12 , x 24 , x 48 , x 49 , x 98 , x 99 , x 198 , x 199 , x 398 .