Search results
Results from the WOW.Com Content Network
The maximum flow problem was first formulated in 1954 by T. E. Harris and F. S. Ross as a simplified model of Soviet railway traffic flow. [1] [2] [3]In 1955, Lester R. Ford, Jr. and Delbert R. Fulkerson created the first known algorithm, the Ford–Fulkerson algorithm.
This means all v ∈ V \ {s, t} have no excess flow, and with no excess the preflow f obeys the flow conservation constraint and can be considered a normal flow. This flow is the maximum flow according to the max-flow min-cut theorem since there is no augmenting path from s to t. [8] Therefore, the algorithm will return the maximum flow upon ...
The Ford–Fulkerson algorithm, a greedy algorithm for maximum flow that is not in general strongly polynomial; The network simplex algorithm, a method based on linear programming but specialized for network flow [1]: 402–460 The out-of-kilter algorithm for minimum-cost flow [1]: 326–331 The push–relabel maximum flow algorithm, one of the ...
The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network.It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified [1] or it is specified in several implementations with different running times. [2]
{,,,,} with 5 units of flow. Therefore, the blocking flow is of 5 units and the value of flow | | is 14 + 5 = 19. Note that each augmenting path has 4 edges. 3. Since cannot be reached in , the algorithm terminates and returns a flow with maximum value of 19. Note that in each blocking flow, the number of edges in the augmenting path increases ...
In computer science, the Edmonds–Karp algorithm is an implementation of the Ford–Fulkerson method for computing the maximum flow in a flow network in (| | | |) time. The algorithm was first published by Yefim Dinitz in 1970, [ 1 ] [ 2 ] and independently published by Jack Edmonds and Richard Karp in 1972. [ 3 ]
In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink.
Approximate max-flow min-cut theorems deal with the relationship between maximum flow rate ("max-flow") and minimum cut ("min-cut") in a multi-commodity flow problem. The theorems have enabled the development of approximation algorithms for use in graph partition and related problems.