Search results
Results from the WOW.Com Content Network
The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...
Ferroelectricity: A state of matter with spontaneous electric polarization. Antiferroelectricity: A state of matter in which the adjacent electric dipoles point in opposite directions. Charge ordering; Charge density wave: An ordered state in which charge density is periodically modulated.
Forms of matter that are not composed of molecules and are organized by different forces can also be considered different states of matter. Superfluids (like Fermionic condensate) and the quark–gluon plasma are examples. In a chemical equation, the state of matter of the chemicals may be shown as (s) for solid, (l) for liquid, and (g) for gas.
Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale ...
Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals.For example, a liquid crystal can flow like a liquid, but its molecules may be oriented in a common direction as in a solid.
(See state of matter § Glass.) More precisely, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. [1] [2]: 86 [3]: 3 Examples of physical properties include density, index of refraction, magnetization and chemical composition.
The oscillation frequency of the standing wave, multiplied by the Planck constant, is the energy of the state according to the Planck–Einstein relation. Stationary states are quantum states that are solutions to the time-independent Schrödinger equation : H ^ | Ψ = E Ψ | Ψ , {\displaystyle {\hat {H}}|\Psi \rangle =E_{\Psi }|\Psi \rangle ...
At one point, when the overlap becomes significant, a macroscopic number of particles condense into the ground state. In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero, i.e., 0 K (−273.15 ...