Search results
Results from the WOW.Com Content Network
Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e.g., FS-1015).
The use of speech recognition is more naturally suited to the generation of narrative text, as part of a radiology/pathology interpretation, progress note or discharge summary: the ergonomic gains of using speech recognition to enter structured discrete data (e.g., numeric values or codes from a list or a controlled vocabulary) are relatively ...
Linear predictive coding (LPC) is a method used mostly in audio signal processing and speech processing for representing the spectral envelope of a digital signal of speech in compressed form, using the information of a linear predictive model. [1] [2] LPC is the most widely used method in speech coding and speech synthesis.
OpenAI claims that the combination of different training data used in its development has led to improved recognition of accents, background noise and jargon compared to previous approaches. [3] Whisper is a weakly-supervised deep learning acoustic model, made using an encoder-decoder transformer architecture. [1]
In June 2018, Google proposed to use pre-trained speaker verification models as speaker encoders to extract speaker embeddings. [14] The speaker encoders then become part of the neural text-to-speech models, so that it can determine the style and characteristics of the output speech.
The T5 encoder can be used as a text encoder, much like BERT. It encodes a text into a sequence of real-number vectors, which can be used for downstream applications. For example, Google Imagen [ 26 ] uses T5-XXL as text encoder, and the encoded text vectors are used as conditioning on a diffusion model .
A spoken dialog system (SDS) is a computer system able to converse with a human with voice.It has two essential components that do not exist in a written text dialog system: a speech recognizer and a text-to-speech module (written text dialog systems usually use other input systems provided by an OS).
In the process of encoding, the sender (i.e. encoder) uses verbal (e.g. words, signs, images, video) and non-verbal (e.g. body language, hand gestures, face expressions) symbols for which he or she believes the receiver (that is, the decoder) will understand. The symbols can be words and numbers, images, face expressions, signals and/or actions.