enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Einstein notation - Wikipedia

    en.wikipedia.org/wiki/Einstein_notation

    3.4 Matrix multiplication. 3.5 Trace. 3.6 Outer product. 3.7 Raising and lowering indices. ... where indices take on values 0, 1, 2, or 3 (frequently used letters are ...

  3. Index notation - Wikipedia

    en.wikipedia.org/wiki/Index_notation

    The entry of a matrix A is written using two indices, say i and j, with or without commas to separate the indices: a ij or a i,j, where the first subscript is the row number and the second is the column number. Juxtaposition is also used as notation for multiplication; this may be a source of confusion. For example, if

  4. Triangular number - Wikipedia

    en.wikipedia.org/wiki/Triangular_number

    The final digit of a triangular number is 0, 1, 3, 5, 6, or 8, and thus such numbers never end in 2, 4, 7, or 9. A final 3 must be preceded by a 0 or 5; a final 8 must be preceded by a 2 or 7. In base 10, the digital root of a nonzero triangular number is always 1, 3, 6, or 9. Hence, every triangular number is either divisible by three or has a ...

  5. Multi-index notation - Wikipedia

    en.wikipedia.org/wiki/Multi-index_notation

    Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.

  6. Tensor contraction - Wikipedia

    en.wikipedia.org/wiki/Tensor_contraction

    [2] [3] Applying the canonical pairing to the kth V factor and the lth V ∗ factor, and using the identity on all other factors, defines the (k, l) contraction operation, which is a linear map that yields a tensor of type (m − 1, n − 1). [2] By analogy with the (1, 1) case, the general contraction operation is sometimes called the trace.

  7. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    It is common convention to use greek indices when writing expressions involving tensors in Minkowski space, while Latin indices are reserved for Euclidean space. Well-formulated expressions are constrained by the rules of Einstein summation : any index may appear at most twice and furthermore a raised index must contract with a lowered index.

  8. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).

  9. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop: